Figure 19.4
The lost update
problem.

Figure 19.5
The uncommitted
dependency
probiem.

AL 3 el lljegi.ﬁ_"trmjsédﬁéhng :
begiﬁ;ﬁ':aliéacﬁon‘ e b i‘-ead(balx‘)“ ;
% redd(bal,) i B R 1
‘baly =baly ~10° ok
- write(baly)

S write(baly)

.~ commit

" bal, = bal, + 100

i commit R pkintl
LA S i i

bal,

100
100

100
L2000

19907
90

Time . ER T Bt '.f”Ts- T4 T, R
o 3 begiﬁ_ﬁmsaizﬁbﬁ :
rcad(bég,"}_;_ﬂ_ e
. baly = bal,+ 100

ti".""_"-"- g gegin;t;ansacﬁqh“_-‘:_" o e
it Ttk SRS read (bl TR iR R

R

A : .._Wﬁte(bal,{}, \- b

g | .o read(baly) o

baly

Times 3 b i - S n T LR T

R ‘*Begin_transaction'-' I

ty i l;égirl;transacﬁun 3
read(baly)
i'bal, =bal, —10

A em =0
‘ wread(baly) ._
: sum =sum :F'Balx“'
read{bal) = -

v

. ‘write(bal,)

t7..-0 L baly =baly +20 .
t . write(baly)’ S S R o
tg . . commit : e : fﬁdd(?a‘lz),::.':,i,> s 90 G ot 7
: ; sum=sum+bal; a0 " o50

it ommmit G T o e T

-.sum.‘

Figure 19.6
The inconsistent
analysis problem.

19.2 Concurrency Control 565

If upgrading of locks is allowed, upgrading can take place only during the growing
phase and may require that the transaction wait until another transaction releases a shared
lock on the item. Downgrading can take place only during the shrinking phase. We now
Jook at how two-phase locking is used to resolve the three problems identified in Section

19.2.1.

Example 19.6 Preventing the lost update problem using 2PL

A solution to the lost update problem is shown in Figure 19.11. To prevent the lost update
problem occurring, T, first requests an exclusive lock on bal,. It can then proceed to read
the value of bal, from the database, increment it by £100, and write the new value back to
the database. When T, starts, it also requests an exclusive lock on bal,. However, because
the data item bal, is currently exclusively locked by T, the request is not immediately
granted and T, has to wait until the lock is released by T,. This occurs only once the com-
mit of T, has been completed.

; ; . Figure 19.11
pese DN, Sk ! et PR A i % i ?2 ok Ral Preventing the lost
R B ST .begin;&ﬁpéact_iqn i . ipp = update probiem.
.tz ‘ " begin_transaction : write_lock(baly) . 100
ts write_lock(bal) . read(baly ¢] 100
i WAIT: ‘ " baly=hal, +100 100
ts i WAIT - S - write(baly) ; 200
T WAIT = " : commit/unlock(baly) 200
e read(baly) - B b IR oR s A SN e
tg ~ baly=bal,-10 ‘ : ‘ : 200
tg ‘write(baly) LoLCT ‘ 190
it commit/unlock(balg) L ¢- < ¢ 190

|

l Example 19.7 Preventing the uncommitted dependency problem
using 2PL

A solution to the uncommitted dependency problem is shown in Figure 19.12. To prevent
this problem occurring, T, first requests an exclusive lock on bal, It can then proceed to
read the value of bal, from the database, increment it by £100, and write the new value
back to the database. When the rollback is executed, the updates of transaction T, are
undone and the value of bal, in the database is returned to its original value of £100. When
T, starts, it also requests an exclusive lock on bal,. However, because the data item bal, is
currently exclusively locked by T,, the request is not immediately granted and T; has
to wait until the lock is released by T,. This occurs only once the rollback of T, has been

completed.

566 Chapter 19 B Transaction Management

Figure 19.12
Preventing the
uncommitted
dependency
problem.

Figure 19.13
Preventing the
inconsistent
analysis problem.

Time T . T4 bal,
4y begin—_transictiun © 100
t; write_lock(bal,) 100
3 - .rea'd[balx‘.)' R 100
Eity begin_transaction 'balxﬁ‘ba[x + 100 100
it ~+ write_lock(baly) - vrite(baly). 1200
tg , WAIT . . rollbackfunlock{baly)- <100
e " read(bal,) 3 e 100
iy bal, = bal, — 10 “ 100
ty 0 write(baly) 90
Tt . commit/unlock(bal,) ‘90

—

Example 19.8 Preventing the inconsistent analysis problem using 2PL

A solution to the inconsistent analysis problem is shown in Figure 19.13. To prevent this
problem occurring, Ts must precede its reads by exclusive locks, and T, must precede its
reads with shared locks. Therefore, when Tj starts it requests and obtains an exclusive lock
on bal,. Now, when Ty tries to share lock bal, the request is not immediately granted and
T, has to wait until the lock is released, which is when T; commits.

Time T bal, bal, bal, - sum
ty begin_'l:ransaction 100 50 25

Ay . begin_transaction _sum=10 100. 50 25 0
ts write. lock(baly) ! 100 50 25 0
ty read(baly) read_lock(baly) 100 50 25] 0
s baly = bal, — 10 WAIT 100 50 25 Yoxe
% . write(baly) WAIT 9 50 25 0
e write_lock(bal,) WAIT 90 - 50 .25 0
t read(baly) WAIT .90 .50 25 o,
tg bal, = bal, + 10 WAIT 90 50 25 50
t write(baly) " WAIT ‘90 . 50 35 0
ty commit/unlock(baly, bal,) WAIT _ 90 50 35050 0
f 5 - : read(baly) 90 -ax/50 L i 355 0
ti3 sum = sum + baly 90 50 35 90
‘the read_lock(baly) 9055501 S35 90°
15 read(baiy) R 90 50 .35 90
tie sum = sum + baly, - 90 S0 AEN35 140
ty7 read_lock(bal;) 9 50 35 140
t1g read(bal,) - 9 50 35 140
tie sum = sum + bal, 9 50 35 175
too commit/unlock(baly, baly, bal;) 90 50 35 175

L

19.2 Concurrency Conirol 567

It can be proved that if every transaction in a schedule follows the two-phase lock-
ing protocol, then the schedule is guaranteed to be conflict serializable (Eswaran ef al.,
1976). However, while the two-phase locking protocol guarantees serializability, problems
can occur with the interpretation of when locks can be released, as the next example

shows.

Example 19.9 Cascading rollback

Consider a schedule consisting of the three transactions shown in Figure 19.14, which con-
forms to the two-phase locking protocol. Transaction T, obtains an exclusive lock on bal,
then updates it using bal,, which has been obtained with a shared lock, and writes the value
of bal, back to the database before releasing the lock on bal,. Transaction T then obtains
an exclusive lock on bal,, reads the value of bal, from the database, updates it, and writes
the new value back to the database before releasing the lock. Finally, T4 share locks bal,
and reads it from the database. By now, T, has failed and has been rolled back. However,
since T,s is dependent on T, (it has read an item that has been updated by T,;), T,s must
also be rolled back. Similarly, T, is dependent on T, so it too must be rolled back. This
sitnation, in which a single transaction leads to a series of rollbacks, is called cascading

rollback.

Time . LIRS ; “Tis T
T _ begin_transaction
pleret “write_lock(baly) 3 STy
ty _ read(bal,) ;
4 o reéd_iock(haly)
g ' read(baly)
tg { bal, = bal,, + bal,
t) write(bal,) _ ;
tg unlock(bal) begin_transaction
‘g i B - write_lock(baly)-
tyg ! ; : ’ read(baly)
Sty e s bal, = bal, -+ 100
L tyg * write(baly)
ty3 ‘unlock(baly)
by S :
g i ans rollback
tls- Ha @l 3 begin_transaction
ty7 a0t | read_lock(baly)
tig rollback H
g ' rollback -

Figure 19.14
Cascading rollback

with 2PL.

|

